Answer:
a)
b)
Explanation:
Given:
mass of bullet, 
compression of the spring, 
force required for the given compression, 
(a)
We know

where:
a= acceleration


we have:
initial velocity,
Using the eq. of motion:

where:
v= final velocity after the separation of spring with the bullet.


(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,

∵At maximum height the final velocity will be zero

Using the equation of motion:

where:
h= height
g= acceleration due to gravity


is the height from the release position of the spring.
So, the height from the latched position be:



- Height (h) = 10 m
- Density (ρ) = 1000 Kg/m^3
- Acceleration due to gravity (g) = 10 m/s^2
- We know, pressure in a fluid = hρg
- Therefore, the pressure exerted by a column of fresh water
- = hρg
- = (10 × 1000 × 10) Pa
- = 100000 Pa
<u>Answer</u><u>:</u>
<u>1000</u><u>0</u><u>0</u><u> </u><u>Pa</u>
Hope you could understand.
If you have any query, feel free to ask.
Choice 'b' is one possible way to state
Newton's second law of motion.
The other choices are meaningless.
Answer:

Explanation:
As we know that average velocity is defined as the ratio of total displacement of the object and its time interval.
so here we can say

now we know that in one complete revolution the total displacement of the tip of the seconds hand is zero
because it will have same position after one complete revolution from where it starts
so here we can say that the average velocity will be zero

Answer:
Explanation:
the spherical mirror can form an image even if it is cut in half horizontally , but the image formed may be blurred.
pls mark as brainliest if you find it helpful