Mac and Keena are experimenting with pulses on a rope. Mac vibrates one end up and down while Keena holds the other end. This creates a pulse which they observe moving from end to end. How does the position of a point on the rope before the start of the pulse compare to its position after the pulse passes? Explain your reasoning.
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
Answer:
19.08 m/s
Explanation:
f = actual frequency emitted by the parked car's horn = 440 Hz
V = speed of sound = 342 m/s
f' = frequency of the horn observed by you = 466 Hz
v = speed of your car moving towards the parked car = ?
frequency of the horn observed by you is given as


v = 19.08 m/s
The answer would be stay because the surface is flat so it will stay!
<u>Acceleration</u> is the rate at which <u>velocity</u> changes.