Answer:
The electric field at x = 3L is 166.67 N/C
Solution:
As per the question:
The uniform line charge density on the x-axis for x, 0< x< L is 
Total charge, Q = 7 nC = 
At x = 2L,
Electric field, 
Coulomb constant, K = 
Now, we know that:

Also the line charge density:

Thus
Q = 
Now, for small element:


Integrating both the sides from x = L to x = 2L

![\vec{E_{2L}} = K\lambda[\frac{- 1}{x}]_{L}^{2L}] = K\frac{Q}{L}[frac{1}{2L}]](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7BL%7D%5E%7B2L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D)
![\vec{E_{2L}} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{2L}] = \frac{63}{L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7BL%5E%7B2%7D%7D)
Similarly,
For the field in between the range 2L< x < 3L:

![\vec{E} = K\lambda[\frac{- 1}{x}]_{2L}^{3L}] = K\frac{Q}{L}[frac{1}{6L}]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7B2L%7D%5E%7B3L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D)
![\vec{E} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{6L}] = \frac{63}{6L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7B6L%5E%7B2%7D%7D)
Now,
If at x = 2L,

Then at x = 3L:

When a substance is heated the average kinetic energy of molecules increases and they start moving with an increased speed.As a result between mean separation between the molecules also increases
When a magnet is moved into a coil of wire, changing the magnetic field and magnetic flux through the coil, a voltage will be generated in the coil according to Faraday's Law.
First year biology.
The answer is D. Each process results in the formation of Daughter Cells, except the process of Meiosis results in half the number of Daughter Cells, where Mitosis has Daughter Cells identical to the Parent Cell.