Answer:
See Explanation
Explanation:
According to Newton's second law of motion, the acceleration of a body is proportional to the net external force that acts on the body.
A body accelerated when it is acted upon by an unbalanced net external force.
When the external forces acting on a body are balanced, the effect of each force is cancelled by the other hence the body is not accelerated according to Newton's second law.
Answer:
The friction force acting on the object is 7.84 N
Explanation:
Given;
mass of object, m = 4 kg
coefficient of kinetic friction, μk = 0.2
The friction force acting on the object is calculated as;
F = μkN
F = μkmg
where;
F is the frictional force
m is the mass of the object
g is the acceleration due to gravity
F = 0.2 x 4 x 9.8
F = 7.84 N
Therefore, the friction force acting on the object is 7.84 N
Frequensey or hertz, I looked this up on the internet!
Kinetic energy = (1/2) (mass) (speed)²
BUT . . . in order to use this equation just the way it's written,
the speed has to be in meters per second. So we'll have to
make that conversion.
KE = (1/2) · (1,451 kg) · (48 km/hr)² · (1000 m/km)² · (1 hr/3,600 sec)²
= (725.5) · (48 · 1000 · 1 / 3,600)² (kg) · (km·m·hr / hr·km·sec)²
= (725.5) · ( 40/3 )² · ( kg·m² / sec²)
= 128,978 joules (rounded)
Answer: the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
Explanation:
Given that;
diameter of the mirror d = 1.7 m
height h = 180 km = 180 × 10³ m
wavelength λ = 500 nm = 5 × 10⁻⁹ m
Now Angular separation from the peak of the central maximum is expressed as;
sin∅= 1.22 λ / d
sin∅ = (1.22 × 5 × 10⁻⁹) / 1.7
sin∅ = 3.588 × 10⁻⁷
we know that;
sin∅ = object separation / distance from telescope
object separation =
sin∅ × distance from telescope
object separation = 3.588 × 10⁻⁷ × 180 × 10³
object separation =6.45 × 10⁻² m
then we convert to centimeter
object separation = 6.45 cm
Therefore the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm