Answer:
As a boy, Sir Isaac Newton was fascinated by a Windmill.
A drawing of a Windmill, which many believe to have been sketched by the young Newton over three an half centuries ago was discovered in his childhood home on a wall.
Cheers!
<span>Let's put it this way. Say you have a killer-whale and a penguin. Killer-whales are major predators to penguins. Now, say the killer-whale population increases. The penguins would be eaten more by the killer-whales, then causing a population decrease for the penguins. If the population decreases, they're won't be enough penguins, and they most likely will become extinct, as well as causing a population decrease for the killer-whales as well. Whereas, vis versa, they're were a killer-whale population decrease. The penguins would be less hunted, therefore, creating a population increase for the penguins.</span>
hi <3
i believe the answer would be D, as when the temperature increases the particles have more energy and can overcome the activation energy more rapidly.
hope this helps :)
Answer:
13.8 N
Explanation:
Pressure on the one end of the hydraulic system = Pressure on the other end
Pressure = Force / Area where Force is in Newton, area is in m²
so Force of one end (F1) / area of that end = force of the other end (F2) / area of that end
3112 / ( 707 /10000) in m² = F2 / ( 3.14 / 10000) in m²
cross multiply
44016.97 × 0.000314 = 13.82 N
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.