Answer:
option C
Explanation:
The correct answer is option C
Kinetic energy is the energy which is due to the motion of body.
Potential energy is the energy due to virtue of position of the object.
option A is not true because potential energy is due the position of the body
Option B should be the potential energy not kinetic energy.;
Option D is motion of individual molecule leads to kinetic energy not potential energy.
So, the correct answer is option is the covalent bonds of a sugar molecule is potential energy because of the position of bond.
Answer:
<em>The range is 35.35 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:
The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:
The range is 35.35 m
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
B student 2 because you add