Q1. Option 2: basketball
Q2: Newton's first law is <span>the </span>law<span> of inertia. </span>An object at rest stays at rest and an object in motion stays in motion.
<span>
</span>
<span>Q3. A basketball sitting on the floor stays there and a basketball rolling on court keeps on rolling.</span>
<span>
</span>
<span>Q4 Second law says acceleration is dependent upon net force and mass of the object.</span>
Q5. Basketball accelerates when a player tries to dunk it with both hands.
<span>Q6. Third law says f<span>or every action, there is an equal and opposite reaction.</span></span>
<span><span>
</span></span>
<span><span>Q7. As a player dribbles, the force the basketball hits the floor with is the same as the force from the floor on the ball. That is why the ball bounces back up in air.</span></span>
<span><span>
</span></span>
Because the tip of the moon's shadow ... the area of "totality" ... is never more than a couple hundred miles across, It never covers a single place for more than 7 minutes, and can never stay on the Earth's surface for more than a few hours altogether during one eclipse.
If you're not inside that small area, you don't see a total eclipse.
It is very difficult for an atom to accept a proton. It can only be done under very special circumstances. So A and C are both incorrect. I don't see how D is possible. The atom does lose 1 electron, but how it gets 21 is think air.
The answer is B which is exactly what happens.
Frequency (f) = 500 hz (SI)
Velocity (V) = 1250 m/s (SI)
Wavelength (Lambda) = ? meters
