<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters.
Let's calculate the time for the ball to fall 235 meters to the ground.
y = (1/2)gt^2
t^2 = 2y / g
t = sqrt{ 2y / g }
t = sqrt{ (2) (235 m) / (9.81 m/s^2) }
t = 6.9217 s
We can use the time t to find the horizontal speed.
v = d / t
v = 235 m / 6.9217 s
v = 33.95 m/s
Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>
2. The object's volume.
3. The density of the liquid.
Remember what the buoyant force is. It's the lifting force caused by the displacement of a fluid. I'm using the word fluid because it can be either a liquid or gas. For instance a helium balloon floats due to the buoyant force exceeding the mass of the balloon. So let's look at the options and see what's correct.
1. Object's mass
* This doesn't affect the buoyant force directly. It can have an effect if the object's mass is lower than the buoyant force being exerted. Think of a boat as an example. The boat is floating on the top of the water. If cargo is loaded into the boat, the boat sinks further into the water until the increased buoyant force matches the increased mass of the boat. But if the density of the object exceeds the density of the fluid, then increasing the mass of the object will not affect the buoyant force. So this is a bad choice.
2. The object's volume.
* Yes, this directly affects the buoyant force. So this is a good choice.
3. The density of the liquid.
* Yes, this directly affects the buoyant force. You can drop a piece of iron into water and it will sink. You could also drop that same piece of iron into mercury and it will float. The reason is that mercury has a much higher density than water. So this is a good choice.
4. Mass of the liquid
* No. Do not mistake mass for density. As a mental exercise, imagine the buoyant force on a small piece of metal dropped into a swimming pool. Now imagine the buoyant force on that same piece of metal dropped into a lake. In both cases, the buoyant force is the same, yet the lake has a far greater mass of water than the swimming pool. So this is a bad choice.
Answer:
image is vertical at distance -203.62 cm
magnification is 2.110
Explanation:
given data
n = 1.51
distance u = 96.5 cm
concave radius r1 = 24 cm
convex radius r2 = 19.1 cm
to find out
final image distance and magnification
solution
we will apply here lens formula to find focal length f
1/f = n-1 ( 1/r1 - 1/r2) .......................1
put here all value
1/f = 1.51 -1 ( -1/24 + 1/19.1)
f = 183.43
so from lens formula
1/f = 1/v + 1/u .............................2
put here all value and find v
1/183.43 = 1/v + 1/96.5
so
v = −203.62 cm
so here image is vertical at distance -203.62 cm
and
magnification are = -v /u
magnification = 203.62 / 96.5
magnification is 2.110
You don't have a following space exploration
A & C
Explanation:
The combination of the earth's weak gravity and its closeness to the sun does not allow it to hold hydrogen and helium gases in its atmosphere. Its relative closeness to the sun means it is hot enough such that the helium and hydrogen molecules would have high kinetic energy. Remember that gravity acts strongly on larger masses, therefore it would require very strong gravity to have an influence on lighter gas molecules like hydrogen and helium let alone when they have a high kinetic energy. This means these molecules can easily escape the earth’s atmosphere into space.
Planets that are larger (meaning they have a stronger gravity) and farther from the sun (meaning these molecules won't have a very high kinetic energy) are able to hold these lighter gases in their atmosphere. Examples of such planets are Jupiter.
Learn More:
For more on gravity check out;
brainly.com/question/8844454
#LearnWithBraily