Answer:
The price of an adult ticket is $9 and the price of a student ticket is $6
Step-by-step explanation:
Create a system of equations where x is the price of an adult ticket and y is the price of a student ticket:
2x + 7y = 60
3x + 11y = 93
Solve by elimination by multiplying the top equation by 3 and the bottom equation by -2, to cancel out the x terms:
6x + 21y = 180
-6x - 22y = -186
Add them together:
-y = -6
y = 6
Then, plug in 6 as y into one of the equations to solve for x:
2x + 7y = 60
2x + 7(6) = 60
2x + 42 = 60
2x = 18
x = 9
So, the price of an adult ticket is $9 and the price of a student ticket is $6
Answer:
$7,429 I think (it has to be 20 characters ignore this part)
Answer:
(c, m) = (45, 10)
Step-by-step explanation:
A dozen White Chocolate Blizzards generate more income and take less flour than a dozen Mint Breezes, so production of those should clearly be maximized. Making 45 dozen Blizzards does not use all the flour, so the remaining flour can be used to make Breezes.
Maximum Blizzards that can be made: 45 dz. Flour used: 45×5 oz = 225 oz.
The remaining flour is ...
315 oz -225 oz = 90 oz
This is enough for (90 oz)/(9 oz/dz) = 10 dozen Mint Breezes. This is in the required range of 2 to 15 dozen.
Kelly should make 45 dozen White Chocolate Blizzards and 10 dozen Mint Breezes: (c, m) = (45, 10).
__
In the attached graph, we have reversed the applicable inequalities so the feasible region shows up white, instead of shaded with 5 different colors. The objective function is the green line, shown at the point that maximizes income. (c, m) ⇔ (x, y)
90,000,000+300000+400000+700000+2000+800+10