Answer:
The sample size to obtain the desired margin of error is 160.
Step-by-step explanation:
The Margin of Error is given as

Rearranging this equation in terms of n gives
![n=\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2](https://tex.z-dn.net/?f=n%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2)
Now the Margin of Error is reduced by 2 so the new M_2 is given as M/2 so the value of n_2 is calculated as
![n_2=\left[z_{crit}\times \dfrac{\sigma}{M_2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{\sigma}{M/2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{2\sigma}{M}\right]^2\\n_2=2^2\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4n](https://tex.z-dn.net/?f=n_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM_2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%2F2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B2%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D2%5E2%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4n)
As n is given as 40 so the new sample size is given as

So the sample size to obtain the desired margin of error is 160.
You have two given data available here: the actual height of the Empire State Building measuring 1,450 feet, and the height of the block measuring 2 feet. To find how many blocks stacked together would make up 1,450 feet, just divide 1,450 by 2.
Number of blocks=1,450 feet * (1 block/2 feet)
Number of blocks = 725 blocks
Therefore, you would use a model requiring 725 blocks. The scale factor for the model is 1 block per two feet.
Answer:
C
Step-by-step explanation:
1000mg=1g
The inverse of a function is obtained by making x the subject of the formular of the function.
Given the function

the inverse of the function is obtained as follows:

Given the function
[tex[f(x)=x+7[/tex]
the inverse of the function is obtained as follows:

Given the function

the inverse of the function is obtained as follows:

Given the function

the inverse of the function is obtained as follows: