Answer:
The self-induced emf in this inductor is 4.68 mV.
Explanation:
The emf in the inductor is given by:

Where:
dI/dt: is the decreasing current's rate change = -18.0 mA/s (the minus sign is because the current is decreasing)
L: is the inductance = 0.260 H
So, the emf is:

Therefore, the self-induced emf in this inductor is 4.68 mV.
I hope it helps you!
Answer:
Your friend is 2.143 blocks from the restaurant.
You are 2.857 blocks from the restaurant.
Explanation:
Let t be the time both you and your friend take to walk to the restaurant.
The distance (m) from your building to the restaurant is your walking time t times your speed v1

Similarly the distance (m) from your friend building to the restaurant:

Let b be the length (in m) of a block, the total distance of 5 blocks is 5b





So your friend are 2.143b meters from the restaurant, since each block is b meters long, 2.143b meters would equals to 2.143b/b = 2.143 blocks. And you are 5 - 2.143 = 2.857 blocks from the restaurant.
How do you ask a question but don’t know the answer we will never know
Sawyer Hey!! Go subscribe to Emily Dobson and sawyer sharbino and watch all there videos together