To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
Answer: independent variable: Size of the feather.
Explanation:
In an experiment, the manipulated/independent variable is, as the name implies, the variable that the scientist can control.
In this case, the scientist has only one variable that he can control at will, and this is the size of the feather (he can choose which feather he uses for the experiment)
So the manipulated variable will be the size of the feather.
And the dependent variable is the one that "answers" to the changes in the manipulated variable.
In this case, will be the time that it takes to the feather to fall to the ground.
The answer is Oceans. It is the most important source of water vapor in the atmosphere. <span>Given the huge amount of water they have and their huge surface areas, naturally the bulk of water which evaporates and enters the atmosphere is from oceans.</span>
Answer:
0.1 s
Explanation:
The net force on the log is F - f = ma where F = force due to winch = 2850 N, f = kinetic frictional force = μmg where μ = coefficient of kinetic friction between log and ground = 0.45, m = mass of log = 300 kg and g = acceleration due to gravity = 9.8 m/s² and a = acceleration of log
So F - f = ma
F - μmg = ma
F/m - μg = a
So, substituting the values of the variables into the equation, we have
a = F/m - μg
a = 2850 N/300 kg - 0.45 × 9.8 m/s²
a = 9.5 m/s² - 4.41 m/s²
a = 5.09 m/s²
Since acceleration, a = (v - u)/t where u = initial velocity of log = 0 m/s (since it was a rest before being pulled out of the ditch), v = final velocity of log = 0.5 m/s and t = time taken for the log to reach a speed of 0.5 m/s.
So, making t subject of the formula, we have
t = (v - u)/a
substituting the values of the variables into the equation, we have
t = (v - u)/a
t = (0.5 m/s - 0 m/s)/5.09 m/s²
t = 0.5 m/s ÷ 5.09 m/s²
t = 0.098 s
t ≅ 0.1 s
The North Shore mountains