Answer:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:
notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:
This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
They are right the answer is A true
Hello, love! The answer is True, or T, on Edge2020.
Hope this helped!
~ V.
The answer is photocoagulation.
The use of a laser beam to seal leaky blood vessels and to prevent the growth of new ones in diabetic retinopathy is called laser <u>photocoagulation.</u>
<u></u>
What is photocoagulation?
A minimally invasive method used to treat numerous retinal illnesses is photocoagulation of the retina, also known as retinal laser photocoagulation. The retina may expand due to aberrant leaky blood vessels developing across it in a number of disorders. Laser photocoagulation uses thermal energy above 65 °C to burn the retinal tissue by creating thermal burns. This can prevent the retina from being damaged by the bleeding blood vessels. In addition to causing fibrosis, laser photocoagulation can also seal retinal tears. Laser photocoagulation is typically unable to recover already lost vision in cases of retinal disease, but it can slow the progression of the condition, lower the chance of further vision loss, and preserve residual vision. The likelihood of problems following the operation is quite minimal.
To learn more about photocoagulation click on the link below:
brainly.com/question/16016898
#SPJ4
<u></u>