Answer:
0.665
Explanation:
I did the work. Just plug everything in from the formula. Look at the lesson manual.
The particle in the air match the mass with the particles around the balloon stoping it from floating any higher
Answer:
a) a = 3.06 10¹⁵ m / s
, b) F= 1.43 10⁻¹⁰ N, c) F_total = 14.32 10⁻²⁶ N
Explanation:
This exercise will average solve using the moment relationship.
a ) let's use the relationship between momentum and momentum
I = ∫ F dt = Δp
F t = m
- m v₀
F = m (v_{f} -v₀o) / t
in the exercise indicates that the speed module is the same, but in the opposite direction
F = m (-2v) / t
if we use Newton's second law
F = m a
we substitute
- 2 mv / t = m a
a = - 2 v / t
let's calculate
a = - 2 4.59 10²/3 10⁻¹³
a = 3.06 10¹⁵ m / s
b) F= m a
F= 4.68 10⁻²⁶ 3.06 10¹⁵
F= 1.43 10⁻¹⁰ N
c) if we hit the wall for 1015 each exerts a force F
F_total = n F
F_total = n m a
F_total = 10¹⁵ 4.68 10⁻²⁶ 3.06 10¹⁵
F_total = 14.32 10⁻²⁶ N
Answer
given,
Speed of car A = 95 Km/h
= 95 x 0.278 = 26.41 m/s
Speed of Car B = 121 Km/h
= 121 x 0.278 = 33.64 m/s
Distance between Car A and B at t=0 = 41 Km
a) Distance travel by car B
d = 26.41 t + 41000
speed of the car A = 33.64 m/s
distance = s x t
26.41 t + 41000 = 33.64 x t
7.23 t = 41000
t = 5670.82 s
time taken by Car B to cross Car A is equal to t = 5670.82 s
distance traveled by car A
D = s x t = 26.41 x 5670.82 = 149766.25 m = 149.76 Km
b) distance travel by the car B in 30 s after overtaking car A
D' = s x t = 33.64 x 30 = 1009.2 m = 1 Km
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N