CH4 + 2O2 = CO2 + 2H2O
According to molar weights :
16 gm CH4 + 64 gm O2 = 44 gm CO2 + 36 gm H2O
Since 16 gm CH4 produce 36 gm H2O
Hence 2.5 gmCH4 produce 36×2.5/16 gm H2O
= 5.265 gm of H2O
2.1K viewsView 2 Upvoters
2
1
Related Questions (More Answers Below)
Answer:
Inhibitor
Explanation:
Inhibitors generally slow down a reaction rate and prevent the particles from reacting with each other.
It's not the others because:
Catalysts work by lowering the activation energy, which in turn increases the reaction rate as more particles have enough energy to react.
Surface area allows for particles in the reaction to collide more often with each other, which increases the reaction rate.
Temperature increases the speed of particles in the reaction, causing particles to collide more often with each other and therefore increasing the reaction rate.
Answer:
%yield of NH₃ = 30%
Explanation:
Actual yield of NH₃ = 40.8g
Theoretical yield = ?
Equation of reaction
N₂ + 3H₂ → 2NH₃
Molar mass of NH₃ = 17g/mol
Molarmass of N = 14.00
2 molecules of N = 2 * 14.00 = 28g/mol
Number of moles = mass / molar mass
Mass = number of moles * molar mass
Mass = 1 * 28.00 = 28g of N₂ (the number of moles of N₂ from the equation is 1).
From the equation of reaction,
28g of N₂ produce (2 * 17)g of NH₃
28g of N₂ = 34g of NH₃
112g of N₂ = x g of NH₃
X = (112 * 34) / 28
X = 136g of NH₃
Theoretical yield = 136g of NH₃
% yield = (actual yield / theoretical yield) * 100
% yield = (40.8 / 136) * 100
% yield = 0.3 * 100
% yield = 30%
Qn1)B
qn2)C
This is because a nonmetal(oxygen) and a metal(magnesium) form ionic bond.
An ionic bond is strong electrostatic forces of attraction between positive and negative ions (opposite ions)
exp: Mg2+ + O2- ---> MgO