The absolute value makes it 9
True. Polynomial means consisting of several terms. A<span>n expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variables.
For example:
f(x) = x3 + 2x 1/2
Since there are two parts to this equation, it is polynomial.
I hope I helped.</span>
Answer:
Sry its long but if your to lazy to look thru it here is the answer= z = {-7, 8}
Step-by-step explanation:
Simplifying
z2 + -1z + -56 = 0
Reorder the terms:
-56 + -1z + z2 = 0
Solving:
-56 + -1z + z2 = 0
Solving for variable 'z'.
Factor a trinomial.
(-7 + -1z)(8 + -1z) = 0
Subproblem 1
Set the factor '(-7 + -1z)' equal to zero and attempt to solve:
Simplifying:
-7 + -1z = 0
Solving:
-7 + -1z = 0
Move all terms containing z to the left, all other terms to the right.
Add '7' to each side of the equation.
-7 + 7 + -1z = 0 + 7
Combine like terms: -7 + 7 = 0
0 + -1z = 0 + 7
-1z = 0 + 7
Combine like terms: 0 + 7 = 7
-1z = 7
Divide each side by '-1'.
z = -7
Simplifying:
z = -7
Subproblem 2
Set the factor '(8 + -1z)' equal to zero and attempt to solve:
Simplifying:
8 + -1z = 0
Solving:
8 + -1z = 0
Move all terms containing z to the left, all other terms to the right.
Add '-8' to each side of the equation.
8 + -8 + -1z = 0 + -8
Combine like terms: 8 + -8 = 0
0 + -1z = 0 + -8
-1z = 0 + -8
Combine like terms: 0 + -8 = -8
-1z = -8
Divide each side by '-1'.
z = 8
Simplifying:
z = 8
Solution
z = {-7, 8}
Answer:
There is no greatest power of 3 that is divisible of 100.
Step-by-step explanation:
Since any number can always be divisible of 100, there would be no greatest power of 3 that is divisible of 100 since the powers can go on and on forever without stopping, and all powers of 3 is able to be divided by 100.