Answer:
the answer is A
Step-by-step explanation:i just did it
your welcome
Answer:
The scaled surface area of a square pyramid to the original surface area.
The scaled area of a triangle to the original area.
Step-by-step explanation:
Suppose that we have a cube with sidelength M.
if we rescale this measure with a scale factor 8, we get 8*M
Now, if previously the area of one side was of order M^2, with the rescaled measure the area will be something like (8*M)^2 = 64*M^2
This means that the ratio of the surfaces/areas will be 64.
(and will be the same for a pyramid, a rectangle, etc)
Then the correct options will be the ones related to surfaces, that are:
The scaled surface area of a square pyramid to the original surface area.
The scaled area of a triangle to the original area.
A right triangle's longest side is the hypotenuse
let x=longest, y=middle, and z=shortest
x=y+2
y=2z-1
therefore x=(2z-1)+2=2z+1
find z
z^2+y^2=x^2 by Pythagorean theorem
plug in x and y in terms of z
z^2+(2z-1)^2=(2z+1)^2
z^2+4z^2-4z+1=4z^2+4z+1
subtract the right-hand side's value from the left-hand side's
z^2-8z=0
z(z-8)=0
z=0, 8
z cannot be zero as the sides must have some value to it.
Therefore the shortest side is equal to 8
Answer:
?
Step-by-step explanation: