Answer:
Let coordinates of vertex D be (x,y)
In parallelogram diagonals are bisect each other.
∴ Mid-point of AC= Mid-point of BD
⇒ (
2
3+(−6)
,
2
−4+2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,
2
−2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,−1)=(
2
−1+x
,
2
−3+y
)
Now,
⇒
2
−3
=
2
−1+x
⇒ −6=−2+2x
⇒ −4=2x
∴ x=−2
⇒ −1=
2
−3+y
⇒ −2=−3+y
⇒ 1=y
∴ y=1
∴ Coordinates of vertex D is (−2,1)
Solution D
Just put into a calculator
Hope I helped :)
Answer:
60
Step-by-step explanation:
2 times 150
8 = 8v - 4 (v + 8)
Distribute the 4 through the parentheses
8 = 8v - 4v - 32
combine like terms
8 = 4v - 32
add 32 to both sides
8 + 32 = 4v -32 + 32
combine like terms
40 = 4v
divide each side by 4
40/10 = v
4 = v
v= 4