Answer:
625.46 °C
Explanation:
We'll begin by converting 19 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 19 °C
T(K) = 19 °C + 273
T(K) = 292 K
Next, we shall determine the Final temperature. This can be obtained as follow:
Initial volume (V₁) = 3.25 L
Initial temperature (T₁) = 292 K
Final volume (V₂) = 10 L
Final temperature (T₂) =?
V₁/T₁ = V₂/T₂
3.25 / 292 = 10 / T₂
Cross multiply
3.25 × T₂ = 292 × 10
3.25 × T₂ = 2920
Divide both side by 3.25
T₂ = 2920 / 3.25
T₂ = 898.46 K
Finally, we shall convert 898.46 K to celsius temperature. This can be obtained as follow:
T(°C) = T(K) – 273
T(K) = 898.46 K
T(°C) = 898.46 – 273
T(°C) = 625.46 °C
Therefore the final temperature of the gas is 625.46 °C
There are various kind of elements that are present in periodic table. Some elements are harmful, some are radioactive, some are noble gases. The atomic radius in decreasing order is Bi>Sb>As>N>O.
<h3>
What is periodic table?</h3>
Periodic table is a table in which we find elements with properties like metals, non metals, metalloids and radioactive element arranges in increasing atomic number.
Along the period, the size of elements decreases. Down the group the size of elements increases. The atomic radius in decreasing order is Bi>Sb>As>N>O.
Therefore, atomic radius in decreasing order is Bi>Sb>As>N>O.
Learn more about periodic table, here:
brainly.com/question/11155928
#SPJ1
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M
Answer:
390
Explanation:
Specific heat capacity= heat/mass × temperature

Remember you convert gram into kilogram and 1 gram =0.001 kilogram
Half life is the time that it takes for half of the original value of some amount of a radioactive element to decay.
We have the following equation representing the half-life decay:

A is the resulting amount after t time
Ao is the initial amount = 50 mg
t= Elapsed time
t half is the half-life of the substance = 14.3 days
We replace the know values into the equation to have an exponential decay function for a 50mg sample

That would be the answer for a)
To know the P-32 remaining after 84 days we have to replace this value in the equation:

So, after 84 days the P-32 remaining will be 0.85 mg