3 Chlorine ions are required to bond with one aluminum ion.
In ionic bonds, metals atoms loses all its outermost shell electrons to form a cation. While, non metal atoms gains however many electrons in order to make its outermost electron shell be 8 (or 2 if there's only one shell).
Therefore, form the periodic table, we can see that aluminum has a atomic number of 13, which makes its electron arrangement be 2,8,3. So, in order to form a aluminum ion, an Al atom must lose 3 electrons. On the other hand, Chlorine has a atomic number of 17, which means it has the electron configuration of 2,8,7. It has to gain only 1 electron to have 8 outermost shell electron.
Thereofre, 3 Chlorine atom are required to gain all 3 electrons given out by just 1 aluminum ion.
Answer: Mass of
required to form 930 kg of iron is 1328 kg
Explanation:
To calculate the number of moles, we use the equation:
.....(1)
For iron:
Given mass of iron = 930 kg = 930000 g (1kg=1000g)
Molar mass of iron = 56 g/mol
Putting values in equation 1, we get:

The chemical equation for the production of iron follows:

By Stoichiometry of the reaction:
2 moles of iron are produced by = 1 mole of 
So, 16607 moles of iron will be produced by =
of 
Now, calculating the mass of
from equation 1, we get:
Mass of
= 
Thus mass of
required to form 930 kg of iron is 1328 kg
Answer:
The atomic number of burienium will be 307.
Explanation:
During positron emission proton is converted into the neutron and one electron neutrino with positron is released. It means the atomic number will be reduce by one and atomic mass remain same.
For example:
²³Mg₁₂ → ₁₁Na²³+ e⁺+ Ve
Similarly, when highlinium-308 undergoes positron emission the new element burienium is produced and the atomic number will be 307 while atomic mass remain same.
Properties of beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminium is used to block the beta radiation