Entropy, the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work. Because work is obtained from ordered molecular motion, the amount of entropy is also a measure of the molecular disorder, or randomness, of a system.
Answer:
addition polymerization
Explanation:
In addition polymerization, the monomers are simply joined to each other to form a polymer having the same empirical formula as the monomer but of higher relative molecular mass. The monomers in addition polymerization are usually simple unsaturated molecules such as alkenes.
We can deduce the reaction to be an addition polymerization because of the the attachment of n to both the unsaturated monomer and the saturated polymer without the loss of any small molecule. If it was a condensation polymerization, there would have been an accompanying loss of a small molecule such as water.
Answer:
It is both accurate and precise.
Explanation:
Precision and accuracy are two different terms used to describe data or measurements. Accuracy refers to how close a set of measurements/experimental values is to an accepted or correct value while Precision refers to how close a series of experimental values are to one another.
In the given set of data in the question below, the Correct Value is 59.2 while the experimental values are as follows;
Trial 1: 58.7
Trial 2: 59.3
Trial 3: 60.0
Trial 4: 58.9
Trial 5: 59.2
Based on comparison, it can be observed that these experimental values are close to the correct value (59.2). Hence, they are said to be ACCURATE. Also, the experimental values are close to one another, hence, they are said to be PRECISE.
Therefore, the data set is both accurate and precise.
I think the correct answer from the choices listed above is option C. Chemical reaction is the process <span>that changes one set of chemicals into another set of chemicals. In a chemical reaction, old bonds are broken down forming new bonds therefore new </span>substances<span> with new properties.</span>
Answer:
Hope this helps D.
Explanation:
During cellular respiration, glucose is broken down in the presence of oxygen to produce carbon dioxide and water. Energy released during the reaction is captured by the energy-carrying molecule ATP (adenosine triphosphate).