Carbon dioxide is emitted as a by-product of clinker production an intermediate product in cement manufacture, in which calcium carbonate (CaCO3) is calcinated and converted to lime (CaO), the primary component of cement. CO2 is also emitted during cement production by fossil fuel combustion.
Which of what? I need more information to decipher that.
400 mA, 70 ms is the following exposure factors will produce the greatest receptor exposure.
C: 400 mA, 70 ms
<u>Explanation:</u>
As SID builds, the introduction rate diminishes and receptor presentation diminishes. SID and the mAs required to keep up the introduction to the IR have a straightforwardly corresponding relationship (as the SID builds, the mAs required to keep up presentation to the IR increments by a corresponding sum).
An expanded SID likewise decreases amplification (size twisting). The most extreme SID ought to be utilized when conceivable to limit amplification. Infrequently, however, the SID can be purposefully diminished for amplification. SID influences size yet not shape twisting.
Answer:
C. The enzyme with mutation 1 has decreased affinity for pyridoxal phosphate, whereas the enzyme with mutation 2 has lost the ability to bind to the substrates.
Explanation:
A coenzyme is an organic cofactor that binds with an enzyme in order to initiate or aid the function of the enzyme. A coenzyme binds to the active site of the enzyme (where the reaction occurs), thereby triggering its activation by modifying protein structure during the reaction. Some examples of coenzymes include Coenzyme A and Adenosine triphosphate (ATP). Pyridoxal phosphate is a coenzyme (it is the active form of vitamin B6) that is required for the function of cystathionase. Moreover, cystathionase is an enzyme that enables cells the synthesis of cysteine from methionine (transsulfuration pathway). The binding of pyridoxal phosphate to the enzyme increases the binding affinity of the enzyme for the substrate, thereby influencing its activity. In this case, it is expected that mutation 1 reduces the binding affinity of the enzyme to the cofactor, and thereby the cofactor is required at a higher concentration to restore normal enzyme activity.