Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
Answer: Option (d) is the correct answer.
Explanation:
The amount of salt present or dissolved in water or water body is known as salinity.
When salinity increases then number of particles increases, therefore, density will increase. Also, number of ions will decrease thus, electrical conductivity will decrease.
On the other hand, increase in salinity will increase the amount of salt (NaCl) is the water.
Thus, we can conclude that out of the given options, the option all of the above is true.
Answer:
Option b. 0.048 M
Explanation:
We have the molecular weight and the mass, from sulcralfate.
Let's convert the mass in g, to moles
1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.
Molarity is mol /L
Let's convert the volume of solution in L
10 mL . 1L/1000 mL = 0.01 L
4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L
The mass number is the summation of number of proton and neutron present in a nucleus of an atom. For the neutral atom the number of positive charge (number of proton) must be equal to the number of electrons. The number of electrons present in an atom is the atomic number of the atom. The standard way to express the mass number (a) and atomic number (m) of a atom (say X) is
. Now for silicon number of electron or atomic number is 14. And the mass number (a) given 29. Thus the expression nucleus of silicon will be 
Nitrous Acid.
Hyponitrous acid: H2N2O2
Nitric acid: HNO3
Pernitric acid: HNO