Answer:
Rutherfords
Explanation:
The model of the atom supported by Bohr's hydrogen experiment is the Rutherford's model of the atom.
Rutherford through his experiment on gold foil suggested the atomic model of the atom. The model posits that an atom has a small positively charged center(nucleus) where nearly all the mass is concentrated.
- Surrounding the nucleus is the large space containing electrons.
- In the Bohr's model of the atom, he suggested that the extranuclear space of the atom is made up of electrons in specific spherical orbits around the nucleus.
Answer:
5
Explanation:
Given parameters:
Hydrogen ion concentration = 0.00001M
Unknown:
pH of the solution =?
Solution:
The pH is used to estimate the degree of acidity or alkalinity of a solution. To solve for pH of any solution, we use the expression below;
pH = -log [H⁺]
[H⁺] is the hydrogen ion concentration
pH = -log (1 x 10⁻⁵)
pH = -(-5) = 5
Answer:
Isotopes are basically atoms of an element that have an unequal number of neutrons and protons. Of course the proton number remains the same, but the neutron number either decreases or increases, which leads to an overall change in mass. However, no chemical properties of the atom/element are changed as the electrons are the same number and do not react. In regards to Helium 4, the original number of neutrons in Helium is 2, and protons 2 as well. We see an equal number of neutrons and protons, hence an unchanged mass, and the element is <em>not</em> an isotope.
Balanced equation:
Mg + 2 HNO3 —> Mg(NO3)2 + H2
This is a metal + acid reaction giving salt and hydrogen (not water).
The elements are listed in order of increasing the atomic number. Its the number that is the number of protons in the nucleus of an atom.