The amine here is the easiest to spot since there’s only one structure that has a nitrogen atom, which would be the first (the first structure is a primary amine).
The distinguishing functional group of an alcohol is the hydroxy group (—OH). Both the second and third structures have an —OH group, but the —OH in the third structure is part of a carboxyl group (—COOH or —C(=O)OH). A carboxyl group takes priority over hydroxy group. Thus, the second structure would be an alcohol and the third structure would be a carboxylic acid.
That leaves us with the fourth structure, a hydrocarbon with a halogen substitutent, or, aptly named, a halocarbon.
Take 82 grams and divide it by the gfm of water which is 18 g/mole...(82g)/(18.0g/mole)=4.555 -> the answer is 4.6 moles
Answer:
Oxygen will dissolve more in H2O at 5 atm and 20 °C than at 5 atm 80 °C
Option B is correct.
Explanation:
Step 1: Data given
Pressure = 5 atm
Temperature = 20 °C or 80 °C
Step 2:
At low pressure, a gas has a low solubility. Decreased pressure allows more gas molecules to be present in the air, with very little being dissolved in solution. At high(er) pressure, a gas has a high solubility.
This means the higher the pressure the more the gas will dissolve. Since The pressure stays constant, it depends on the temperature.
The solubility of gases in liquids decreases with increasing temperature.
This means the gas will dissolve more with a lower temperature.
Oxygen will dissolve more in H2O at 5 atm and 20 °C than at 5 atm 80 °C
<span>Anthracite is also referred to as hard coal because it is so hard and pure. It is very hard and highly compacted with variety of coal that has submetallic luster. It has highest carbon content, the lowest impurities, and highest density of energy of all the coal deposits.</span>
Because room temperature is below the ignition temperature of petrol. At this temperature energy in the form of heat, flame, or electric spark is needed to start the reaction.