Explanation:
(a) The given data is as follows.
Pressure on top (
) = 140 bar =
(as 1 bar =
)
Temperature =
= (15 + 273) K = 288 K
Density of gas = 


= 0.4548

=
= 
Hence, pressure at the natural gas-oil interface is
.
(b) At the bottom of the tank,

= 2.206 \times 10^{7} Pa + 700 \times 9.81 \times (6000 - 4700)[/tex]
= 
= 309.8 bar
Hence, at the bottom of the well at
pressure is 309.8 bar.
Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:

where; B = -
C = -5800 
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have


Multiplying through with V² ; we have


V = 2250.06 cm³ mol⁻¹
Z = 
Z = 
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :












The compressibility is calculated as:


Z = 0.9386


V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At 
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = 
Z = 
Z = 0.588
The reaction, 2 C4H10 (g) + 13 O2 (g) = 8 CO2 (g) + 5 H2O (g), is the combustion of butane. A combustion reaction involves the reaction of a hydrocarbon with oxygen producing carbon dioxide and water. This reaction is exothermic which means it releases energy in the form of heat. Therefore, as the reaction proceeds,a heat energy is being given off by the reaction. This happens because the total kinetic energy of the reactants is greater than the total kinetic energy of the products. So, the excess energy should be given off somewhere which in this case is released as heat.