What book do you need these answers from?
Answer:
The maximum value of the table t(x) has a greater maximum value that the graph g(x)
Step-by-step explanation:
The table shows t(x) has two (2) x-intercepts: t(-3) = t(5) = 0. The graph shows g(x) has two (2) x-intercepts: g(1) = g(5) = 0. Neither function has fewer x-intercepts than the other.
The table shows the y-intercept of t(x) to be t(0) = 3. The graph shows the y-intercept of g(x) to be g(0) = -1. The y-intercepts are not the same, and that of t(x) is greater than that of g(x).
The table shows the maximum value of t(x) to be t(1) = 4. The graph shows the maximum value of g(x) to be g(3) = 2. Thus ...
the maximum value of t(x) is greater than the maximum value of g(x)
V= 3 x 4^2 x 12
v= 576cm^3
311,225,823,387,830,850,069
Oof
Note that
Answer:
Mary's risk premium is $0.9375
Step-by-step explanation:
Mary's utility function,
Mary's initial wealth = $100
The gamble has a 50% probability of raising her wealth to $115 and a 50% probability of lowering it to $77
Expected wealth of Mary, 
= (0.5 * $115) + (0.5 * $77)
= 57.5 + 38.5
= $96
The expected value of Mary's wealth is $96
Calculate the expected utility (EU) of Mary:-
![E_u = [0.5 * U(115)] + [0.5 * U(77)]\\E_u = [0.5 * 115^{0.5}] + [0.5 * 77^{0.5}]\\E_u = 5.36 + 4.39\\E_u = \$ 9.75](https://tex.z-dn.net/?f=E_u%20%3D%20%5B0.5%20%2A%20U%28115%29%5D%20%2B%20%5B0.5%20%2A%20U%2877%29%5D%5C%5CE_u%20%3D%20%5B0.5%20%2A%20115%5E%7B0.5%7D%5D%20%2B%20%5B0.5%20%2A%2077%5E%7B0.5%7D%5D%5C%5CE_u%20%3D%205.36%20%2B%204.39%5C%5CE_u%20%3D%20%5C%24%209.75)
The expected utility of Mary is $9.75
Mary will be willing to pay an amount P as risk premium to avoid taking the risk, where
U(EW - P) is equal to Mary's expected utility from the risky gamble.
U(EW - P) = EU
U(94 - P) = 9.63
Square root (94 - P) = 9.63
If Mary's risk premium is P, the expected utility will be given by the formula:

Mary's risk premium is $0.9375