<span>ABCD is a parallelogram.
Looking at the quadrilateral ABCD, the first thing to do is to determine if the opposite sides are parallel to each other. So let's check that by looking at the opposite sides.
Line segment BA. When you go from point B to point A, you move to the right 1 space, and down 4 spaces. So the slope is -4. Looking at line segment CD, you also move to the right 1 space and down 4 spaces, which also means a slope of -4. So those two sides are parallel. When you compare line segments BC and AD, you'll notice that for both of them, you go to the right 5 spaces and up 2 spaces, so those too are parallel. So we can now saw that the quadrilateral ABCD is a parallelogram.
Since ABCD is a parallelogram, we now need to check if it's a rectangle (we know it can't be a square since the sides aren't all the same length). An easy way to test if it's a rectangle is to check of one of the angles is 90 degrees. And if we draw a line from B to D, we can create a triangle ABD. And in a right triangle, due to Pythagora's theorem we know that A^2 + B^2 = C^2 where A is the line segment AB, B is the line segment AD and C is the line segment BD. So let's calculate A^2, B^2, and C^2.
A^2: Line segment AB. We can construct a right triangle with A = 1 and B = 4. So C^2 = 1^2 + 4^2 = 1 + 16 = 17. So we have an A^2 value of 17
B^2: Line segment AD. We can construct a right triangle with A = 2 and B = 5. So C^2 = 2^2 + 5^2 = 4 + 25 = 29. So we have an B^2 value of 29
C^2: Line segment BD. We can construct a right triangle with A = 2 and B = 6. So C^2 = 2^2 + 6^2 = 4 + 36 = 40. So we have a C^2 value of 40.
Now let's check if the equation A^2 + B^2 = C^2 is correct:
17 + 29 = 40
46 = 40
And since 46 isn't equal to 40, that means that ABCD can not be a rectangle. So it's just a parallelogram.</span>
Answer:
this will probably help
Step-by-step explanation:
Answer:
The answer is 1/3x-1
Step-by-step explanation:
Let's simplify step-by-step.
5/6x−7−(1/2x−6)
Distribute the Negative Sign:
=5/6x−7+−1(1/2x−6)
=5/6x+−7+−1(1/2x)+(−1)(−6)
=5/6x+−7+−1/2x+6
Combine Like Terms:
=5/6x+−7+−1/2x+6
=(5/6x+−1/2x)+(−7+6)
=1/3x+−1
Answer:
=1/3x−1
Answer:
Kay sold 67; Allen sold 50
Step-by-step explanation:
Let "a" represent the number of phones that Allen sold.
a + (a+17) = 117 . . . equation used to find the answer
2a = 100 . . . . . . . . subtract 17, collect terms
a = 50 . . . . . . . . . . divide by 2; the number Allen sold
a+17 = 67 . . . . . . . . Kay sold 17 more than Allen
Answer:
The answers are given below.
Step-by-step explanation:
The computation is shown below:
1.a.
Profit Margin = Net Income ÷ Sales × 100
= $374 ÷ $6,900 ×100
= 5.4%
1-b:
Average Assets = (Beginning Assets + Ending Assets) ÷ 2
= ($3,200 + $3,600) ÷ 2
= $3,400
Now
Return on Assets = Net Income ÷ Average Assets
= $374 ÷ $3,400
= 11%
1-c
Average Equity = ($700 + $700 + $320 + $270) ÷ 2
= $995
Now
Return on Equity = Net Income ÷ Average Equity *100
= $374 ÷ $995
= 37.59%
2:
Dividends Paid = Beginning Retained Earnings + Net Income – Ending Retained Earnings
= $270 + $374 - $320
= $324