Consider the closed region

bounded simultaneously by the paraboloid and plane, jointly denoted

. By the divergence theorem,

And since we have

the volume integral will be much easier to compute. Converting to cylindrical coordinates, we have




Then the integral over the paraboloid would be the difference of the integral over the total surface and the integral over the disk. Denoting the disk by

, we have

Parameterize

by


which would give a unit normal vector of

. However, the divergence theorem requires that the closed surface

be oriented with outward-pointing normal vectors, which means we should instead use

.
Now,



So, the flux over the paraboloid alone is
48/12 = 24•2/6•2= 24/6= 12•2/3•2= 12/3= 4/1
In simplest form the ratio is
4 worksheets : 1 student
Answer:
- 3(2 +7)
- 9(3 +5)
- 16(2 +3)
- 15(2 +5)
- 8(11 +3)
Step-by-step explanation:
- 6 + 21 = 2·3 + 3·7 = 3(2 +7)
- 27 + 45 = 3^3 + 3^2·5 = 9(3 +5)
- 32 + 48 = 2^5 + 2^4·3 = 16(2 +3)
- 30 + 75 = 2·3·5 + 3·5^2 = 15(2 +5)
- 88 + 24 = 2^3·11 +2^3·3 = 8(11 +3)
In each case, the factor outside parentheses is the greatest common factor, the product of the prime factors common to both numbers. When the same factor has different powers, the least power is the common factor.
Answer:
the answer for your question is b