1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
3 years ago
9

Four friends are sharing 7 pizzas equally. How much pizza will each person get?

Mathematics
2 answers:
maw [93]3 years ago
5 0
If it is 8 slices per pie.


8*7= 56

56 total slices.
———————- = 14 slices per friend
4

Answer: 14 slices each.
garik1379 [7]3 years ago
3 0

Answer:

1.75 or 1 3/4 pieces of pizza per person

Step-by-step explanation:

Hi,

Divide 4 by 7 and you get...

1 3/4 or 1.75

I hope this helps :)

You might be interested in
How do solve you do 5b/2=27.5
inna [77]
2.5 b = 27.5
b = 27.5 / 2.5

b = 11
6 0
3 years ago
Marquis wrote the linear regression equation y=1.245*-3.684
Advocard [28]
I would say 35 because if you put in 35 for x you get 39.891
5 0
3 years ago
Read 2 more answers
7<br><img src="https://tex.z-dn.net/?f=7%20%20%5E%7B2%7D%20-%20%20%7C6%20-%202%287%29%7C%20%5Ctimes%203%20%5E%7B2%7D%20" id="Tex
frutty [35]

Answer:

-23

Step-by-step explanation:

you calculate 49-|6-14|x 9

you then calculate the absolute value

49-|-8|x 9

then multiply the numbers

49-8 x 9

calculate those numbers

49 - 72

your solution will be -23

5 0
3 years ago
which has the greatest mass? a.) 3.88 x 10^22 moecules of O2, b.)1.00 g of O2, C.)0.0312 mol of O2, D.) All of these have the sa
tresset_1 [31]
The right option is A.
8 0
3 years ago
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Other questions:
  • A candy shop sells a box of chocolates for $30. It has $29 worth of chocolates plus $1 for the box. The box includes two kinds o
    14·1 answer
  • Plzzzzz help will Mark BRAINLYLIST!!!!!
    15·1 answer
  • A smaller square garden has an area of 400 square meters . What is the length of one side of the garden?
    11·2 answers
  • What is the radius of a circle that has a circumference of 81.64 meters?<br><br> r =___________a0m
    11·2 answers
  • The function g is defined as g(x)=5x² – 3.<br> Find g(x+1).
    14·1 answer
  • Find the product of the expression:<br> (5p^3) (-1m^8p^2)
    10·1 answer
  • Which is a perfect square?<br> O 5<br> 0001<br> O<br> 36<br> 44
    15·1 answer
  • 3. A new state law says that the penalty for
    10·1 answer
  • Find the x-intercept(s) and the coordinates of the vertex for the parabola =y−x2−2x3. If there is more than one x-intercept, sep
    13·1 answer
  • Help I don't understand this math. Whoever gets the right answer gets Brainlist! :)​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!