There are 81 girls to every 72 boys in total, which can be represented by 81/72, which put into decimal form, is 1.125. If you then take the number of boys in the group, 16, and multiply it by this number (because the problem states that the ratio is constant) you can find the number of girls in the group.
16*1.125=18
So there are 18 girls in a group with 16 boys.
<h2>
Answer:</h2>
![\boxed{\overline{MN}=37.96}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Coverline%7BMN%7D%3D37.96%7D)
<h2>
Step-by-step explanation:</h2>
For a better understanding of this problem, see the figure below. Our goal is to find
. Since:
![\angle MRS=\angle MQP=90^{\circ} \\ \\ \overline{MQ}=\overline{MR}=30mm](https://tex.z-dn.net/?f=%5Cangle%20MRS%3D%5Cangle%20MQP%3D90%5E%7B%5Ccirc%7D%20%5C%5C%20%5C%5C%20%5Coverline%7BMQ%7D%3D%5Coverline%7BMR%7D%3D30mm)
and
is a common side both for ΔMRN and ΔMQN, then by SAS postulate, these two triangles are congruent and:
![\overline{RN}=\overline{QN}](https://tex.z-dn.net/?f=%5Coverline%7BRN%7D%3D%5Coverline%7BQN%7D)
By Pythagorean theorem, for triangle NQP:
![\overline{QN}=\sqrt{\overline{NP}^2+\overline{QP}^2} \\ \\ \overline{QN}=\sqrt{10^2+21^2} \\ \\ \overline{QN}=\sqrt{541}](https://tex.z-dn.net/?f=%5Coverline%7BQN%7D%3D%5Csqrt%7B%5Coverline%7BNP%7D%5E2%2B%5Coverline%7BQP%7D%5E2%7D%20%5C%5C%20%5C%5C%20%5Coverline%7BQN%7D%3D%5Csqrt%7B10%5E2%2B21%5E2%7D%20%5C%5C%20%5C%5C%20%5Coverline%7BQN%7D%3D%5Csqrt%7B541%7D)
Applying Pythagorean theorem again, but for triangle MQN:
![\overline{MN}=\sqrt{\overline{MQ}^2+\overline{QN}^2} \\ \\ \overline{MN}=\sqrt{30^2+(\sqrt{541})^2} \\ \\ \boxed{\overline{MN}=37.96}](https://tex.z-dn.net/?f=%5Coverline%7BMN%7D%3D%5Csqrt%7B%5Coverline%7BMQ%7D%5E2%2B%5Coverline%7BQN%7D%5E2%7D%20%5C%5C%20%5C%5C%20%5Coverline%7BMN%7D%3D%5Csqrt%7B30%5E2%2B%28%5Csqrt%7B541%7D%29%5E2%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5Coverline%7BMN%7D%3D37.96%7D)
That's 6 hours and 6/24 is 1/4 so 1/4 is the answer
The form is y=mx+b
3x=-2y+4 (add 2y)
3x+2y=4 (subtract 3x)
2y=-3x+4 (divide by 2)
y= -2/3x+2
<span>In 3 years, you will have $523.97
</span><span>continuously = daily</span>