<span>For given hyperbola:
center: (0,0)
a=7 (distance from center to vertices)
a^2=49
c=9 (distance from center to vertices)
c^2=81
c^2=a^2+b^2
b^2=c^2-a^2=81-49=32
Equation of given hyperbola:
..
2: vertices (0,+/-3) foci (0,+/-6)
hyperbola has a vertical transverse axis
Its standard form of equation: , (h,k)=(x,y) coordinates of center
For given hyperbola:
center: (0,0)
a=3 (distance from center to vertices)
a^2=9
c=6 (distance from center to vertices)
c^2=36 a^2+b^2
b^2=c^2-a^2=36-9=25
Equation of given hyperbola:
</span>
Answer:
01:55:55
Step-by-step explanation:
1 horas 55 minutos 55 segundos
Answer:
b.
Step-by-step explanation:
The last answer: 2 or 0
Explanation:
When you graph this function, it crosses the x-axis once. In other words, that means there is only 1 real zero and 2 imaginary complex zeros. In addition, imaginary solutions always come in pairs, so there can’t be a odd number of them such as 3.
<h3>
Answer: 680 different combinations</h3>
=======================================================
Explanation:
If order mattered, then we'd have 17*16*15 = 4080 different permutations. Notice how I started with 17 and counted down 1 at a a time until I had 3 slots to fill. We count down by 1 because each time we pick someone, we can't pick them again.
So we have 4080 different ways to pick 3 people if order mattered. But again order doesn't matter. All that counts is the group itself rather than the individual or how they rank. There are 3*2*1 = 6 ways to order any group of three people, which means there are 4080/6 = 680 different combinations possible.
An alternative is to use the nCr formula with n = 17 and r = 3. That formula is

where the exclamation marks indicate factorials