Answer:
There will be produced 1.71 moles of B which contain 1.03×10²⁴ molecules
Explanation:
The example reaction is:
2A → 3B
2 moles of A produce 3 moles of B
If we have the mass of A, we convert it to moles and then, we make the rule of three: 29.2 g / 25.6g/mol = 1.14 moles
Therefore 2 moles of A produce 3 moles of B
1.14 moles of A will produce (1.14 . 3) / 2 = 1.71 moles of B are produced
Now we can determine, the number of molecules
1 mol has NA molecules (6.02×10²³)
1.71 moles have (1.71 . NA) = 1.03×10²⁴ molecules
42700 milliliters would be the answer...
Hope this helps!
Answer:
B. products are found on the write side of the arrow in a chemical reaction.
Answer: A plot of the natural log of the concentration of the reactant as a function of time is linear.
Explanation:
Since it was explicitly stated in the question that the half life is independent of the initial concentration of the reactant then the third option must necessarily be false. Also, the plot of the natural logarithm of the concentration of reactant against time for a first order reaction is linear. In a first order reaction, the half life is independent of the initial concentration of the reactant. Hence the answer.