a. A dam is usually built at the site of hydroelectric power. As water accumulates, its potential power for producing electric power increases. As this water moves downstream from the dam, mostly through a fall, its kinetic energy is harnessed by turbines and converted to electric energy.
b. One factor is the height of the fall of the water from the dam. The higher the height the higher the kinetic energy of the water and hence can be converted to higher electric energy. The higher the number of coils of the turbine generator being rotated by the water, the higher the conversion to electric current.
c. One is impoundment. This type is the most common and involves the building of a dam to store water and later the water is released to turn turbines. The second type is diversion. This type does not require a dam. Some water is diverted from the main river to create a pen-stock that runs a turbine.
d. The advantage of hydroelectric power is that is is a clean energy source hence does not cause global warming. Global warming can have economic consequences. The operating cost of this type of plant is low hence the costs of electricity are able to be kept low for the consumers. 2 disadvantage is that creating a dam upstream causes a change in the physical and chemical characteristics of the river or water bodies affecting ecosystems. Another is that electricity is dependent on the water regime hence dependency is tied to climate.
Answer:
The block will not move.
Explanation:
We'll begin by calculating the frictional force. This can be obtained as follow:
Coefficient of friction (µ) = 0.6
Mass of block (m) = 3 Kg
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (R) = mg = 3 × 10 = 30 N
Frictional force (Fբ) =?
Fբ = µR
Fբ = 0.6 × 30
Fբ = 18 N
From the calculations made above, the frictional force of the block is 18 N. Since the frictional force (i.e 18 N) is bigger than the force applied (i.e 14 N), the block will not move.
To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s
Answer:
Los 0.0416km
esto se debe a que transponemos la fórmula acelerada y obtenemos Distancia = velocidad × tiempo
también recuerda transponer los segundos a horas viendo que la velocidad es por hora
También tenga en cuenta que no hablo español, así que esto fue extremadamente difícil
culto