You have to make the mixed number into a fraction in order to divide
<em>Answer: h = 120 ft; w = 80 ft </em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
<em>Step-by-step explanation: Let h and w be the dimensions of the playground. The area is given by:</em>
<em></em>
<em>A = h*w (eq1)</em>
<em></em>
<em>The total amount of fence used is:</em>
<em></em>
<em>L = 2*h + 2*w + w (eq2) (an extra distance w beacuse of the division)</em>
<em></em>
<em>Solving for w:</em>
<em></em>
<em>w = L - 2/3*h = 480 - 2/3*h (eq3) Replacing this into the area eq:</em>
<em></em>
<em></em>
<em></em>
<em>We derive this and equal zero to find its maximum:</em>
<em></em>
<em> Solving for h:</em>
<em></em>
<em>h = 120 ft. Replacing this into eq3:</em>
<em></em>
<em>w = 80ft</em>
<em></em>
<em>Therefore the maximum area is:</em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
Answer:
Anything in the form x = pi+k*pi, for any integer k
These are not removable discontinuities.
============================================================
Explanation:
Recall that tan(x) = sin(x)/cos(x).
The discontinuities occur whenever cos(x) is equal to zero.
Solving cos(x) = 0 will yield the locations when we have discontinuities.
This all applies to tan(x), but we want to work with tan(x/2) instead.
Simply replace x with x/2 and solve for x like so
cos(x/2) = 0
x/2 = arccos(0)
x/2 = (pi/2) + 2pi*k or x/2 = (-pi/2) + 2pi*k
x = pi + 4pi*k or x = -pi + 4pi*k
Where k is any integer.
If we make a table of some example k values, then we'll find that we could get the following outputs:
- x = -3pi
- x = -pi
- x = pi
- x = 3pi
- x = 5pi
and so on. These are the odd multiples of pi.
So we can effectively condense those x equations into the single equation x = pi+k*pi
That equation is the same as x = (k+1)pi
The graph is below. It shows we have jump discontinuities. These are <u>not</u> removable discontinuities (since we're not removing a single point).
Each student should do 1/4 of one board or 1/8 of both boards. This is because 8÷2 is 4, which means 4 people need to work together on one board.
Answer: Mike descended 3000 feet
Step-by-step explanation: Hope this helps.