Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
Answer:
D = 5.3 g/mL
Explanation:
Density = Mass over Volume
D = m/V
Step 1: Define
D = unknown
m = 16 g
v = 3.0 mL
Step 2: Substitute and Evaluate
D = 16 g / 3.0 mL
D = 5.333333333 g/mL
Step 3: Simplify
We have 2 sig figs.
5.333333333 g/mL ≈ 5.3 g/mL
Answer:
%yield of NH₃ = 30%
Explanation:
Actual yield of NH₃ = 40.8g
Theoretical yield = ?
Equation of reaction
N₂ + 3H₂ → 2NH₃
Molar mass of NH₃ = 17g/mol
Molarmass of N = 14.00
2 molecules of N = 2 * 14.00 = 28g/mol
Number of moles = mass / molar mass
Mass = number of moles * molar mass
Mass = 1 * 28.00 = 28g of N₂ (the number of moles of N₂ from the equation is 1).
From the equation of reaction,
28g of N₂ produce (2 * 17)g of NH₃
28g of N₂ = 34g of NH₃
112g of N₂ = x g of NH₃
X = (112 * 34) / 28
X = 136g of NH₃
Theoretical yield = 136g of NH₃
% yield = (actual yield / theoretical yield) * 100
% yield = (40.8 / 136) * 100
% yield = 0.3 * 100
% yield = 30%