The half-life of any substance is the amount of time taken for half of the original quantity of the substance present to decay. The half-life of a radioactive substance is characteristic to itself, and it may be millions of years long or it may be just a few seconds.
In order to determine the half-life of a substance, we simply use:
t(1/2) = ln(2) / λ
Where λ is the decay constant for that specific isotope.
Cl is highly electronegative and will actually pull away 1 electron from sodium, forming an ionic bond.
Answer:
carbon dioxide
Explanation:
because we breath in oxygen and breath out Carbon
0.008 ÷ 51.3 = 0.0002
Sig Figs
1
0.0002
Decimals
4
0.0002
Scientific Notation
2 × 10-4
E-Notation
2e-4
Words
zero point zero zero zero two
I HOPE I HELP
The balanced combustion reaction of propane, C₃H₈, is
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
Molar mass of propane: 44 g/mol
Moles of propane = 42 g * (1 mol/44g) = 0.9545 mol propane
Molar mass of oxygen: 32 g/mol
Moles of oxygen = 115 g * (1 mol/32 g) = 3.594 mol oxygen
Moles of oxygen needed to completely react propane:
0.9545 mol propane * (5 mol O₂/1 mol propane) = 4.7725 mol oxygen
Since the available oxygen is only 3.594 moles and propane needs 4.7725 moles, that means oxygen is our limiting reactant. We base the amount of water produced here.
Molar mass of water: 18 g/mol
Mass of water produced = 3.594 mol O₂ * (4 mol H₂O/5 mol O₂) * (18 g/mol)
Mass of water produced = 258.768 grams