The end behaviour of the polynomial graph is (b) x ⇒ +∝, f(x) ⇒ -∝ and x ⇒ -∝, f(x) ⇒ -∝
<h3>How to determine the end behaviour of the polynomial graph?</h3>
The polynomial graph represents the given parameter
This polynomial graph is a quadratic function opened downwards
Polynomial function of this form have the following end behaviour:
- As x increases, f(x) decreases
- As x decreases, f(x) decreases
This is represented as
x ⇒ +∝, f(x) ⇒ -∝ and x ⇒ -∝, f(x) ⇒ -∝
Hence, the end behaviour is (b)
Read more about end behaviour at
brainly.com/question/1365136
#SPJ1
<h3>
Answer: choice 4. f(x) and g(x) have a common x-intercept</h3>
===========================================================
Explanation:
For me, it helps to graph everything on the same xy coordinate system. Start with the given graph and plot the points shown in the table. You'll get what you see in the diagram below.
The blue point C in that diagram is on the red parabola. This point is the x intercept as this is where both graphs cross the x axis. Therefore, they have a common x intercept.
------------
Side notes:
- Choice 1 is not true due to choice 4 being true. We have f(x) = g(x) when x = 2, which is why f(x) > g(x) is not true for all x.
- Choice 2 is not true. Point B is not on the parabola.
- Choice 3 is not true. There is only one known intersection point between f(x) and g(x), and that is at the x intercept mentioned above. Of course there may be more intersections, but we don't have enough info to determine this.
Answer:
Tessa has 3 ice-cream scoops
Step-by-step explanation:
Bagels 6x12=72
apples 8x9=72
cookies 12x6=72
juice 9x8=72
72/4 kids is 18 lunches