Answer:
I think is b
Explanation:
if im wrong, heres some information:
mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium.[1] While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.
Answer:
Empirical formula will be (NH₄)₃PO₄, which matches the molecular formula
Explanation:
This is the reaction:
NH₃ + H₃PO₄ → 28.2% N, 20.8% P, 8.1% H, 42.9% O
In 100 g of compound we have:
28.2 g N
20.8 g of P
8.1 g of H
42.9 g of O
Now we divide each between the molar mass:
28.2 g / 14 g/mol = 2.01 mol
20.8 g / 30.97 g/mol = 0.671 mol
8.1 g / 1 g/mol = 8.1 mol
42.9 g / 16 g/mol = 2.68 mol
And we divide again between the lowest value of moles
2.01 mol / 0.671 mol → 3
0.671 mol / 0.671 mol → 1
8.1 mol / 0.671 mol → 12
2.68 mol / 0.671 mol → 4
Molecular formula will be: N₃PH₁₂O₄ → (NH₄)₃PO₄
Empirical formula will be (NH₄)₃PO₄, which matches the molecular formula
Answer:
The octet rule refers to the tendency of atoms to prefer to have eight electrons in the valence shell. When atoms have fewer than eight electrons, they tend to react and form more stable compounds. When discussing the octet rule, we do not consider d or f electrons.
Explanation:
Answer:
What will determine the number of moles of hydronium in an aqueous solution of a strong monoprotic acid? The amount of acid that was added.
Explanation:
Answer:
9.18g
Explanation:
Step 1: Write the reduction half-reaction
Au³⁺(aq) + 3 e⁻ ⇒ Au(s)
Step 2: Calculate the mass of gold is produced when 15.0A of current are passed through a gold solution for 15.0min
We will use the following relationships:
- 1 mole of electrons has a charge of 96486 C (Faraday's constant).
- 1 mole of Au is produced when 3 moles of electrons circulate.
- The molar mass of Au is 196.97 g/mol.
The mass of gold produced is:
