An early model of the atom was developed in 1913 by Danish scientist Niels Bohr (1885–1962). The Bohr model shows the atom as a central nucleus containing protons and neutrons with the electrons in circular orbitals at specific distances from the nucleus . These orbits form electron shells or energy levels, which are a way of visualizing the number of electrons in the various shells. These energy levels are designated by a number and the symbol "n." For example, 1n represents the first energy level located closest to the nucleus.
<u>Answer:</u> The red litmus paper turns blue on dipping in NaOH solution.
<u>Explanation:</u>
Litmus paper is the indicator that detects the nature of the solution, whether it is acidic or basic.
There are 2 types of litmus paper:
- <u>Red litmus paper:</u> This paper will turn blue if it is dipped in basic solution and will remain as such if it is dipped in acidic solution.
- <u>Blue litmus paper:</u> This paper will turn red if it is dipped in acidic solution and will remain as such if it is dipped in basic solution.
NaOH is a strong base, so when a red litmus paper is dipped in the beaker having necessary amount of NaOH, the red litmus paper turns into blue.
Explanation:
Compounds having same molecular formula but different structural and spatial arrangement are isomers.
Three isomers are possible for dibromomethene.
In one structure (IUPAC name: 1,1-dibromomethene), both the bromine atoms are attached to one carbon atom.
In another two structures (Cis and trans), two bromine atoms are attached to two different carbon atoms.
In Cis 1,2-dibromomethene, two bromine atoms are present on the same side.
Whereas in Cis 1,2-dibromomethene, two bromine atoms are present on the opposite side and hence, does not have net dipole moment.
Yes but only if you're talking about treated apple juice with a naturally small amount of water mixed in.
Answer:
H₂ is excess reactant and O₂ the limiting reactant
Explanation:
Based on the chemical reaction:
2H₂(g) + O₂(g) → 2H₂O
<em>2 moles of H₂ react per mole of O₂</em>
<em />
To find limiting reactant we need to convert the mass of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
10g H₂ * (1mol / 2.016g) = 4.96 moles
<em>Moles O₂ -Molar mass: 32g/mol-:</em>
22g O₂ * (1mol / 32g) = 0.69 moles
For a complete reaction of 0.69 moles of O₂ are needed:
0.69mol O₂ * (2mol H₂ / 1mol O₂) = 1.38 moles of H₂
As there are 4.96 moles,
<h3>H₂ is excess reactant and O₂ the limiting reactant</h3>