The third term of the expansion is 6a^2b^2
<h3>How to determine the third term of the
expansion?</h3>
The binomial term is given as
(a - b)^4
The r-th term of the expansion is calculated using
r-th term = C(n, r - 1) * x^(n - r + 1) * y^(r - 1)
So, we have
3rd term = C(4, 3 - 1) * (a)^(4 - 3 + 1) * (-b)^(3-1)
Evaluate the sum and the difference
3rd term = C(4, 2) * (a)^2 * (-b)^2
Evaluate the exponents
3rd term = C(4, 2) * a^2b^2
Evaluate the combination expression
3rd term = 6 * a^2b^2
Evaluate the product
3rd term = 6a^2b^2
Hence, the third term of the expansion is 6a^2b^2
Read more about binomial expansion at
brainly.com/question/13602562
#SPJ1
D. 311 divided by 12 = 25.91
The nearest tenth would be 25.9
4/7,8/14,12/21,16/28,20/35,24/42,28/49,32/56,36/63,40/70 and so on are equivalent fractions to 4/7
Answer:
b. I and II are both false.
Step-by-step explanation:
I. For a significance level, the two tailed hypothesis is not always accurate than the one tailed hypothesis test. The hypothesis testing is carried to find out the correctness of a claim of a population parameter. The two tail hypothesis test which used both positive and negative tails of the distribution is not always more accurate than one tailed test.
II. The process of the point estimation involves the utilization of the values of a statistic which is obtained from the sample data to obtain the best estimate of a corresponding unknown parameter in the given population.
Hence, both the statements are false.