Answer:
A) 282.34 - j 12.08 Ω
B) 0.0266 + j 0.621 / unit
C)
A = 0.812 < 1.09° per unit
B = 164.6 < 85.42°Ω
C = 2.061 * 10^-3 < 90.32° s
D = 0.812 < 1.09° per unit
Explanation:
Given data :
Z ( impedance ) = 0.03 i + j 0.35 Ω/km
positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km
A) calculate Zc
Zc =
=
=
= 282.6 < -2.45°
hence Zc = 282.34 - j 12.08 Ω
B) Calculate gl
gl =
d = 500
z = 0.03 i + j 0.35
y = j4.4*10^-6 S/km
gl = 
= 
= 0.622 < 87.55 °
gl = 0.0266 + j 0.621 / unit
C) exact ABCD parameters for this line
A = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
B = Zc sin h (gl) Ω = 164.6 < 85.42°Ω ( as calculated )
C = 1/Zc sin h (gl) s = 2.061 * 10^-3 < 90.32° s ( as calculated )
D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
where : cos h (gl) = 
sin h (gl) = 
Answer:
A degree in architecture with 60 credit hours.
Explanation:
The requirements need for a student to qualify for a two year master of architecture degree are;
- 60 credit hours in architecture
- Complete 60 credit hours in related area of profession such as; planning, landscape architecture ,public health and others.
- 45 credit hours in architecture course at the level of 500/600
Answer:
230.51 m
Explanation:
Pb = 695 mmHg
Pt = 675 mmHg
Pb - Pt = 20 mmHg
Calculate dP:
dP = p * g * H = (13600)*(9.81)*(20/1000) = 2668.320 Pa
Calculate Height of building as dP is same for any medium of liquid
dP = p*g*H = 2668.320
H = 2668.32 / (1.18 * 9.81) = 230.51 m
Answer:
a) 42.08 ft/sec
b) 3366.33 ft³/sec
c) 0.235
d) 18.225 ft
e) 3.80 ft
Explanation:
Given:
b = 80ft
y1 = 1 ft
y2 = 10ft
a) Let's take the formula:

1 + 8f² = (20+1)²
= 8f² = 440
f² = 55
f = 7.416
For velocity of the faster moving flow, we have :
V1 = 42.08 ft/sec
b) the flow rate will be calculated as
Q = VA
VA = V1 * b *y1
= 42.08 * 80 * 1
= 3366.66 ft³/sec
c) The Froude number of the sub-critical flow.
V2.A2 = 3366.66
Where A2 = 80ft * 10ft
Solving for V2, we have:
= 4.208 ft/sec
Froude number, F2 =
F2 = 0.235
d)
= 18.225ft
e) for critical depth, we use :
= 3.80 ft