Answer:
True
Explanation:
For point in xz plane the stress tensor is given by![\left[\begin{array}{ccc}Dx_{} &txz\\tzx&Dz\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DDx_%7B%7D%20%26txz%5C%5Ctzx%26Dz%5C%5C%5Cend%7Barray%7D%5Cright%5D)
where Dx is the direct stress along x ; Dz is direct stress along z ; tzx and txz are the shear stress components
We know that the stress tensor matrix is symmetrical which means that tzx = txz ( obtained by moment equlibrium )
thus we require only 1 independent component of shear stress to define the whole stress tensor at a point in 2D plane
Answer:
1. Yes, they are all necessary.
2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.
Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in