The bronchi are where air passes from the trachea.
Answer:
1. The difference between the normal hemoglobin protein DNA sequence and the sickle cell hemoglobin DNA sequence is a base to base shift, in this case adenine (GAG) to thymine (GTG).
2. The difference affects the amino acid sequence of the protein by replacing glutamic acid (Glu) with valine (Val).
Explanation:
In sickle cell anemia, a change in the DNA nucleotide sequence is observed, where adenine is substituted by thymine, whose expression is the change in the amino acid sequence of globine β, incorporating valine instead of glutamic acid. This represents a molecular mutation - point mutation - by subtitution, which corresponds to missense mutation.
<u>Normal hemoglobin protein in a RBC</u>
DNA CTG ACT CCT GAG GAG AAG TCT
Amino acids Leu Thr Pro Glu Glu Lys Ser
<u>Sickle cell hemoglobin protein in a RBC</u>
DNA CTG ACT CCT <em>GTG</em> GAG AAG TCT
Amino acids Leu Thr Pro <em>Val</em> Glu Lys Ser
When GAG is transcribed to mRNA, the CUC codon is obtained, which codes for glutamic acid. Thymine substitution causes the DNA sequence to change to GTG, which is transcribed as CAC, the codon that encodes the amino acid valine. The <u>change from glutamic acid to valine in β-globin causes an altered hemoglobin, giving the abnormal erythrocytes observed in sickle cell disease</u>.
Answer: positive sodium ions
Explanation:
This relates to the Action Potential which is what a nerve cell goes through when it needs to send information down the nerve cell to another cell and so on till it gets to the destination of the message.
The information is transmitted when the segments of the axon fire and when they do, positive sodium ions come in from outside the cell to the inside thereby making the inside positive. The previous segment would return to a resting potential when potassium ions which are negative, rush into the cell.
The fact that gravity exists as it can be repeatedly tested and verified