Answer: Option (1) is the correct answer.
Explanation:
The vertical distance between crest or trough from the origin or equilibrium point is known as amplitude of a wave.
In the given pictures, a wave that shows maximum height from the origin will have the maximum amplitude. Whereas the wave that shows minimum height from the origin will have the smallest amplitude.
Thus, we can conclude that waves shown in option 1 will have the smallest amplitude.
Vi=15m/s
vf=20m/s
d=50m
a=(vf²-vi²)/2d
average acceleration= 1.75m/s
Answer: 1.8 g
Explanation:
We start first, by calculating the amount of Helium
n = m/M
m = mass of Helium
M = molar mass if Helium
n = 2/4 = 0.5 moles
proceeding further, we use ideal gas law. PV = nRT
Then we have
P1V1/n1T1 = P2V2/n2T2
So that,
n2 = n1T1P2V2/P1V1T2
From the question, we know that, P1 = P2, and T1 = T2. So that,
n2 = n1v2/v1
n2 = (0.5 * 3.9) / 2
n2 = 1.95/2
n2 = 0.975 moles. With this, we can determine the mass, m2 of Helium
n = m/M
m = n * M
m = 0.975 * 3.9
m = 3.8
The difference between both masses are 3.8 - 2 = 1.8 g
Thus, 1.8 g of Helium was added to the cylinder
Answer:
magnitude = 304.14 km/h
direction:
West of North
Explanation:
The final plane's vector velocity will be the result of the vector addition of one pointing North of length 300 km/h, another one pointing West of length 50 km/h.
To find the magnitude of the final velocity vector (speed) we need to apply the Pythagorean theorem in a right angle triangle with sides: 300 and 50, and find its hypotenuse:
km/h
The actual direction of the plane is calculated using trigonometry, in particular with the arctan function, since the tangent of the angle can be written as:

So the resultant velocity vector of the plane has magnitude = 304.14 km/h,
and it points
West of the North direction.
Answer:
1kg
Explanation:
this box is the smallest and weighs the least. Hope this helps :]