The answer you are looking for would be C. "She asks her lab partner which base he thinks is hardest to study"
This is the correct option out of the other choices.
A. She uses a acid-base indicator to measure the pH of four different solutions
B. She mixes two solutions and measures their pH before and after
C. She asks her lab partner which base he thinks is the hardest to study
D. She measures the temperature of a solution before and after adding H2SO4
Answer:
F > W * sin(α)
Explanation:
The force needed for the box to start sliding up depends on the incline (α).
The external forces acting on the box would be the weight, the normal reaction and the lifting force that is applied to make it slide up.
These forces can be decomposed on their normal and tangential (to the slide plane) components.
The weight will be split into
Wn = W * cos(α) (in normal direction)
Wt = W * sin(α) (in tangential direction)
The normal reaction will be alligned with the normal axis, and will be equal to -Wn
N = -W* cos(α) (in normal direction)
To mke the box slide up, a force must be applied, that is opposite to the tangential component of the weight and at least a little larger
F > |-W * sin(α)| (in tangential direction)
Based on the given values above, in order for us to get the answer, we need to convert the units first. So in 1 kilogram, there is 1,000,000 micrograms. In this case, 1.6 kilograms is 1,600,000 micrograms. For the week to seconds, 1 week is equivalent to 604,800 seconds. Therefore, 1,600,000 micrograms/604,800 seconds. So we are going to simplify this. So it would be 2.65<span>µg/s. Hope this answers your question.</span>
Answer:
g = 11.2 m/s²
Explanation:
First, we will calculate the time period of the pendulum:

where,
T = Time period = ?
t = time taken = 135 s
n = no. of swings in given time = 98
Therefore,

T = 1.38 s
Now, we utilize the second formula for the time period of the simple pendulum, given as follows:

where,
l = length of pendulum = 54 cm = 0.54 m
g = acceleration due to gravity on the planet = ?
Therefore,

<u>g = 11.2 m/s²</u>