Answer:
Magnitude of the force is 2601.9 N
Explanation:
m = 450 kg
coefficient of static friction μs = 0.73
coefficient of kinetic friction is μk = 0.59
The force required to start crate moving is
.
but once crate starts moving the force of friction is reduced
.
Hence to keep crate moving at constant velocity we have to reduce the force pushing crate ie
.
Then the above pushing force will equal the frictional force due to kinetic friction and constant velocity is possible as forces are balanced.
Magnitude of the force

Answer:
R = 668.19 ft
Explanation:
given,
speed of the ball thrown by the pitcher = 100 mph
to travel maximum distance θ = 45°
distance traveled by the ball = ?
using formula
1 mph = 0.44704 m/s
100 mph = 44.704 m/s


R = 203.71 m
1 m = 3.28 ft
R = 203.71 × 3.28
R = 668.19 ft
hence, ball will go at a distance of 668.19 ft when pitcher throw it at 100 mph.
Answer:
In physics and engineering, a free body diagram (force diagram, or FBD) is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a body in a given condition.
According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.
<span>Plate tectonics is the theory that the earth's crust is broken up into plates
that float on top of a hotter and more fluid layer below. Evidence to
support this theory has been uncovered through the study of the earth's
past magnetic field, known as paleomagnetism.</span>