Answer:
(for small oscillations)
Explanation:
The total energy of the pendulum is equal to:

For small oscillations, the equation can be re-arranged into the following form:

Where:
, measured in radians.
If the amplitude of pendulum oscillations is increase by a factor of 4, the angle of oscillation is
and the total energy of the pendulum is:

The factor of change is:


Answer:
Change in kinetic energy = 3297280 J
Explanation:
Given that,
Mass, m = 920 kg
Speed of a car, v = 92 m/s
Kinetic energy, K = 3,893,440 J
If the speed of a car, V = 36 m/s
Net kinetic energy is given by :

The change in kinetic energy = 3,893,440 - 596160
= 3297280 J
So, the change in kinetic energy of the car is 3297280 J.
The very first thing that you should do when a passenger on your boat falls overboard is to throw a PFD or also known as a Personal Flotation Device. This would include anything that can help the passenger to float. But this step would differ, only if the passenger is not wearing a lifevest.
Answer:
The average acceleration of the bearings is 
Explanation:
Given that,
Height = 1.94 m
Bounced height = 1.48 m
Time interval 
Velocity of the ball bearing just before hitting the steel plate
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



Negative as it is directed downwards
After bounce back,
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



We need to calculate the average acceleration of the bearings while they are in contact with the plate
Using formula of acceleration

Put the value into the formula



Hence,The average acceleration of the bearings is 
On a Fahrenheit thermometer, the gas becomes 18 degrees warmer.