Increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
<h3>
What is average kinetic energy of particles?</h3>
The average kinetic energy of particles is the energy possessed by particles due to their constant motion.
The constant motion of particles occurs due to the energy acquired by the particles, when the temperature of the particles increases, the average kinetic energy increases which in turn increases the speed of the particles.
Thus, we can conclude that, increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
Learn more about average kinetic energy here: brainly.com/question/9078768
Answer:
Base units are defined units based on specific objects or events in the physical world. Derived units are defined by combining base units.
Base units are defined by a particular process of measuring a base quantity whereas derived units are defined as algebraic combinations of base units. For example, length is a base quantity in both SI and the English system, but the meter is a base unit in the SI system only.
Answer:
- The separation will be spacelike.
- The first event can't cause the second event, as there exist an frame of reference in which both happens at the same time, in different positions, so, if there were causally connected, it will imply an instant connection, this is faster than light.
Explanation:
We can define the separation between two events (using the + - - - signature) as :
where the separation will be lightlike if is equal to zero, timelike if is positive and spacelike if is negative.
For our problem
So the separation will be spacelike, and the first event can't cause the second event, as there exist an frame of reference in which both happens at the same time, in different positions, so, if there were causally connected, it will imply an instant connection, this is faster than light.
Answer:
2033219.05 J
Explanation:
V = Volume
P = Pressure = 2 atm
m = Mass of water = 1 kg
= Heat of vaporization =
Work done in an isobaric system is given by
Work done is 166780.95 J
Change in internal energy is given by
Heat is given by
The increase in internal energy of the water is 2033219.05 J