Although the moon's distance from earth varies each month because of its eccentric orbit, the moon's mean distance from Earth is nonetheless increasing at the rate of about 3.8 centimeters (1.5 inches) per year
First we determine the
moles CaCl2 present:
525g / (110.9g/mole) =
4.73 moles CaCl2 present
Based on stoichiometry,
there are 2 moles of Cl for every mole of CaCl2:<span>
(2moles Cl / 1mole CaCl2) x 4.73 moles CaCl2 = 9.47 moles Cl </span>
Get the mass:<span>
<span>9.47moles Cl x 35.45g/mole = 335.64 g Cl</span></span>
There are two big advantages of using molarity to express concentration. The first advantage is that it's easy and convenient to use because the solute may be measured in grams, converted into moles, and mixed with a volume.
The second advantage is that the sum of the molar concentrations is the total molar concentration. This permits calculations of density and ionic strength
<span>The best answer is B. ICl experiences induced dipole-induced dipole interactions. Both iodine and chlorine belongs to the same group of the periodic table. Electronegativity decreases as you go down a group therefore Cl will have a greater attraction with the bond it forms with another atom. Dipole-dipole interactions form between I and Cl. For the Br2 molecule, no dipole occurs because they are two identical atoms. Therefore we will be expecting ICl will have a higher boiling point due to higher binding energy it forms.</span>