Answer:
HELLO THERE!
I HOPE MY ANSWER WILL HELP YOU :)
Explanation:
PLEASE NOTE; I HAVE WRITTEN THE ATOMIC NUMBER IN BRACKETS, NEXT TO THE SYMBOL OF THE ELEMENT
Answer: 12g
Explanation:
The amount of energy (Q) required to raise the temperature of a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = 216 joules
Mass of aluminium = ? (let unknown value be Z)
C = 0.90 JºC-1g-1
Φ = (Final temperature - Initial temperature)
= 35°C - 15°C = 20°C
Then, Q = MCΦ
216 J = Z x 0.90 JºC-1g-1 x 20°C
216 J = Z x 18 J°g-1
Z = (216J/18 J°g-1)
Z = 12g
Thus, the mass of the aluminium is 12grams
In the first situation: the mechanism of covection is the main form of heat transfer when warm air from a heater moves around and upward.
In the case of the metal pan the mechanism of heat transfer is conduction.
In the case of sunburn the mechanism is radiation.
In the case of an ice cube melting in a hand, conduction is the most important mechanism.
Answer:
a. 7.8*10¹⁴ He⁺⁺ nuclei/s
b. 4000s
c. 7.7*10⁸s
Explanation:
I = 0.250mA = 2.5 * 10⁻³A
Q = 1.0C
1 e- contains 1.60 * 10⁻¹⁹C
But He⁺⁺ Carrie's 2 charge = 2 * 1.60*10⁻¹⁹C = 3.20*10⁻¹⁹C
(A).
No. Of charge per second = current passing through / charge
1 He⁺⁺ = 2.50 * 10⁻⁴ / 3.2*10⁻¹⁹C
1 He⁺⁺ = 7.8 * 10¹⁴ He⁺⁺ nuclei
(B).
I = Q / t
From this equation, we can determine the time it takes to transfer 1.0C
I = 1.0 / 2.5*10⁻⁴ = 4000s
(C).
Time it takes for 1 mol of He⁺⁺ to strike the target =?
Using Avogadro's ratio,
1.0 mole of He = (6.02 * 10²³ ions/mol ) * (1 / 7.81*10¹⁴ He ions)
Note : ions cancel out leaving the value of the answer in mols.
1.0 mol of He = 7.7 * 10⁸s