Answer:
NH4Br + AgNO3 —> AgBr + NH4NO3
Explanation:
When ammonium bromide and silver(I) nitrate react, the following are obtained as shown below:
NH4Br(aq) + AgNO3(aq) —>
In solution, NH4Br(aq) and AgNO3(aq) will dissociate as follow:
NH4Br(aq) —> NH4+(aq) + Br-(aq)
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
The double displacement reaction will occur as follow:
NH4+(aq) + Br-(aq) + Ag+(aq) + NO3-(aq) —> Ag+(aq) + Br-(aq) + NH4+(aq) + NO3-(aq)
NH4Br(aq) + AgNO3(aq) —> AgBr(s) + NH4NO3(aq)
<u>Answer: </u>The volume of the solution is 85.7 mL
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
We are given:
Molarity of solution = 0.600 M
Given mass of
= 12.00 g
We know, molar mass of ![BaSO_4=[(1\times 137.33)+(1\times 32.07)+(4\times 16)]=233.4g/mol](https://tex.z-dn.net/?f=BaSO_4%3D%5B%281%5Ctimes%20137.33%29%2B%281%5Ctimes%2032.07%29%2B%284%5Ctimes%2016%29%5D%3D233.4g%2Fmol)
Putting values in equation 1, we get:

The rule of significant number that is applied for the problems having multiplication and division:
The least number of significant figures in any number of the problem determines the number of significant figures in the answer.
Here, the least number of significant figures is 3 that is determined by the number, 0.600. Thus, the answer must have these many significant figures only.
Hence, the volume of the solution is 85.7 mL
Answer is all of the above. Solids have definite shapes, volumes, and mass. Liquids don't have a fixed shape, but have a fixed volume. Gases have neither a fixed shape, volume, or mass
Answer: as the temperature increases, the kinetic energy of the molecules increases
Explanation: The kinetic energy of the molecules is the energy possessed by virtue of motion of the particles.
Kinetic energy of the particles is directly proportional to the temperature of the gas.

where T= temperature
R= gas constant
Thus if the temperature is increased, the molecules start moving more randomly and gain kinetic energy.