Answer:
P = 12000 W
Explanation:
General data:
- F = 15000 N
- d = 40 m
- t = 50 s
- P = ?
Work is force times unit of distance. So in order to calculate the power we must first calculate the work.
Formula:
Replace and solve
once the work is found, we proceed to find the power according to the formula:
The power of the crane is <u>12000 Watts.</u>
Greetings.
Answer Explanation :
Poiseuille equation: this equation is used for non ideal flow this is used for the calculation of pressure in laminar flow it is physical law we know that fluid in laminar flow, flows across the pipe whose diameter is larger than the length of pipe
in mathematical form the equation can be expressed as
Q = 
where η is the cofficient of viscosity
now if we assume a small sphere of radius a is suspended freely in the plane of the laminar flow then for assuring that the sphere does not migrate with the flow we have to calculate the rate of flow of the liquid
Answer:
C-D
Explanation:
As you can see from the graph, the distance from A to B was from 0 m to 6 m in a duration of 3 seconds.
Divide 6 meters by 3 seconds to find the speed:
6 ÷ 3 = 2 m/s
B-C is not moving due to a straight line as said in the graph, so speed is
0 m/s.
There is also C-D since the car traveled from a distance of 9 meters
(6 -(-3) = 9) in 3 seconds too. (NOTE: The graph line going down does not mean it is slowing down, but rather going to a certain distance like going backwards)
Divide 9 meters by 3 seconds to get the speed:
9 ÷ 3 = 3 m/s
Between A-B, B-C, and C-D, C-D has the fastest speed recorded with 3 m/s.
A-D does not count here as the line has no connection between point A and point D.
Cheers!
Answer:
The magnitude of Force is 8.58×10⁵N and direction is upwards
Explanation:
The work beam does on the pile driver is given by
W=(FCos180°)Δx= -F(0.088m)
From work energy theorem

Choosing y=0 at the the level where the driver first contacts the beam and vi=0 at yi=+3.40m and comes to rest again vf=0 at yf= -0.088m
So

The magnitude of Force is 8.58×10⁵N and direction is upwards
Answer:
Part a)
T = 3.96 s
Part b)
T = 1.98 s
Part c)
T = 2.8 s
Explanation:
As we know that time period of spring block system is given as

T = 2.8 s
Part a)
If the mass of the block attached is doubled
then we will have



Part b)
If the spring constant is doubled
then we have



Part c)
If the amplitude is halved but mass and spring constant will remain the same
so here we know that time period does not depends on Amplitude
so we will have

T = 2.8 s