Answer:
d. We can calculate it by applying Newton's version of Kepler's third law
Explanation:
The measurements of a Star like the Sun have several problems, the first one is distance, but the most important is the temperature since as we get closer all the instruments will melt. This is why all measurements must be indirect because of the effects that these variables create on nearby bodies.
Kepler's laws are deduced from Newton's law of universal gravitation, in these laws the mass of the Sun affects the orbit of the planets since it creates a force of attraction, if measured the orbit and the time it takes to travel it we can know the centripetal acceleration and with it knows the force, from where we clear the mass of the son.
Let's review the statements of the exercise
.a) False. We don't have good enough models for this calculation
.b) False. The size of the sun is very difficult to measure because it is a mass of gas, in addition the density changes strongly with depth
.c) False. The amount of light that comes out of the sun is not all the light produced and is due to quantum effects where the mass of the sun is not taken into account
.d) True. This method has been used to calculate the mass of the sun and the other planets since the variable distance and time are easily measured from Earth
Correct answer is D
Answer:
Hewo My Lovelys!!
Answer is down below!!
Explanation:
The answer is C) The nail exerts an equal force on the hammer in the opposite direction.
Reason: The Newtons third law states that there is an equal an opposite reaction for every action. When hammer pushes the nail, the nail will push the hammer back in opposite direction. When the hammer hits a nail then nail will exert the equal and opposite force to the hammer. These both objects will exert force on each other in opposite directions.
Hope this helps!! =3
Have a great day, evening, of night!! <3
~ XxGhostMosskitxX
An arachnid has eight legs.
Thw question is not complete. The complete question is;
Charge of uniform linear density (6.7 nCim) is distributed along the entire x axis. Determine the magnitude of the electric field on the y axis at y = 1.6 m. a. 32 N/C b. 150 NC c 75 N/C d. 49 N/C e. 63 NC
Answer:
Option C: E = 75 N/C
Explanation:
We are given;
Uniform linear density; λ = 6.7 nC/m = 6.7 × 10^(-9) C/m
Distance on the y-axis; d = 1.6 m
Now, the formula for electric field with uniform linear density is given as;
E = λ/(2•π•r•ε_o)
Where;
E is electric field
λ is uniform linear density = 6.7 × 10^(-9) C/m
r is distance = 1.6m
ε_o is a constant = 8.85 × 10^(-12) C²/N.m²
Thus;
E = (6.7 × 10^(-9))/(2π × 1.6 × 8.85 × 10^(-12))
E = 75.31 N/C ≈ 75 N/C
I think it's a solar power might seem strange or futuristic but it's already quite common place you might have a solar powered quartz watch on your wrist or solar powered pocket calculator