Answer:
Moment of the force is 20 N-m.
Explanation:
Given:
Force exerted by the person is,
Distance of application of force from the point about which moment is needed is,
Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.
Therefore, the moment of the force about the end of the claw hammer is given as:
Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.
Answer: 17.83 AU
Explanation:
According to Kepler’s Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”. </em>
(1)
Talking in general, this law states a relation between the <u>orbital period</u> of a body (moon, planet, satellite, comet) orbiting a greater body in space with the <u>size</u> of its orbit.
However, if is measured in <u>years</u>, and is measured in <u>astronomical units</u> (equivalent to the distance between the Sun and the Earth: ), equation (1) becomes:
(2)
This means that now both sides of the equation are equal.
Knowing and isolating from (2):
(3)
(4)
Finally:
(5)
Answer:
Speed, mass and acceleration
Explanation:
A scalar quantity is a quantity that has only magnitude but no direction while a vector quantity has both magnitude and direction.
According to the question, the row that has two scalars and one vector is speed, mass and acceleration.
The two scalars in this row are speed and mass while the vector quantity there is the acceleration.
Acceleration has direction since it possess direction. A body accelerating will do so in a particular direction. Speed and mass doesn't possess any direction. Mass only specify the magnitude of the body but no clue as to which direction is the body moving towards.
Speed also only specify the
total distance covered with respect to time but not the direction of the direction.